推到facebook 推到plurk
購書車 | 會員中心 | 客服中心
 

  大數據Big Data
  2013/6/1出版軟皮精裝│15cmX21cm
  定價:360
網站特惠價:306(約85折)
目前庫存不足
   
   
★Amazon「資訊管理」、「電腦文化」暢銷雙榜第一名  

汽車烤漆的顏色能告訴你,這輛二手車的故障率高低嗎?
市政府要怎樣清查,才能迅速找出有致命危險的人孔蓋?
從Google的搜尋字眼,怎麼預測流感疫情的蔓延?

要回答這些問題,關鍵就在於巨量資料(俗稱大數據)。
「巨量資料分析」是一門新興科技,能夠解讀和預測無數的現象,
包括預測機票的價格、好萊塢新片的票房、你家裡的青少年是否未婚懷孕!
也能協助診斷早產兒的健康情況,探查收入高低與幸福快樂的相關程度,
幫忙規劃快遞的送貨路線、電動車的充電站應該設置在哪裡,
還能用來發展自動導航的無人駕駛汽車、
以及「從駕駛人的臀部形態判斷是否為車主」的防盜系統,
也能夠快速進行多種語文的互譯……

兩位最頂尖的大數據專家,真正掌握到巨量資料思維的精髓,
在這本書裡,清晰曉暢的解釋了巨量資料是什麼,
它將如何改變我們的生活,對經濟、社會和科學會帶來什麼影響,
我們又能夠做些什麼,趕搭上這波新潮流,
同時也懂得保護自己,避免個人資料和隱私受到侵害。




  
張進福 元智大學校長、資訊工業策進會董事長
張明正 趨勢科技董事長
程九如 《Wired》雜誌中文版總編輯
每十年,總是有極少數的書,能改變你看待一切的方式。 《大數據》正是這樣的書。
—— 萊斯格(Lawrence Lessig),哈佛法學院網路智慧財產權教授
《大數據》開闢了新境界,告訴我們巨量資料如何從根本上,轉變我們對世界的基本理解……這本書清楚說明了,企業如何釋放潛藏的價值,決策者如何因應新局,以及每個人的認知模式需要如何改變。 —— 伊藤穰一(Joi Ito),麻省理工學院媒體實驗室主任
任何人如果想要保持領先地位,確定未來的商業發展趨勢,都必須閱讀《大數據》。
—— 貝尼奧夫(Marc Benioff),salesforce.com董事長兼執行長
《大數據》很樂觀而務實的看待巨量資料革命——你只要伸頭看看周遭發生的大變化,就會明白這場革命已然開始了,更大的變化即將衝擊而來。
—— 多克托羅(Cory Doctorow),boingboing.com
我們敢肯定的是,《大數據》將是在討論這方面的未來時,一言九鼎的文本。 ──富比士網站
有太多書籍在頌揚資訊社會的技術奇蹟,但是唯有這本《大數據》對資訊的本質,進行了原創的分析。 ──《柯克斯書評》(Kirkus Reviews)
這本書充滿了偉大的見解、駕馭資訊的新途徑,並且對於未來趨勢,提供了很有說服力的願景,這是任何使用巨量資料的人、或受到巨量資料影響的人,都不可或缺的讀物。 ──喬納斯(Jeff Jonas),IBM首席科學家
這本出色耀眼的書,撥開了圍繞在巨量資料周邊的迷霧。不論你從事的是商業、資訊科技、公共行政、教育、醫療,或者你只是單純對未來趨勢感到好奇,都必須閱讀這本《大數據》。 ──布朗(John Seely Brown),全錄帕羅奧圖研究中心主任
正如水是濕滑的,然而單個水分子卻不是;巨量資料也能顯現個別資料無法揭露的訊息。 作者向我們展示了龐大、複雜、凌亂的資料,若是集合起來,竟能用來預測購物行為、流感爆發……的一切模式,真是令人驚駭 ── 薛奇(Clay Shirky),社會媒體理論家
作者讓「巨量資料」這個名詞的內涵變得非常清晰,重要性也遠遠超過矽谷的其他流行語彙……沒有哪一本書能夠提供了這樣的可讀性和平衡報導,告訴我們繼續迷戀數據和資料的諸多好處及缺點。 ── 《華爾街日報》
「巨量資料」是企業管理階層、技術官僚的流行語之一,如果你想知道他們都在談論些什麼,那麼《大數據》正是為你而寫的。這本書深入淺出、而且很意思的切入這個大題目…… ──《波士頓環球報》

現在:
該讓巨量資料說話了

  說巧不巧,就在H1N1躍上新聞頭條的幾星期前,網路巨擘谷歌(Google)旗下的幾位工程師,在著名的《自然》科學期刊發表了一篇重要的論文,當時並未引起一般人的注意,只在衛生當局和電腦科學圈裡引起討論。該篇論文解釋了谷歌能如何「預測」美國在冬天即將爆發流感,甚至還能精準定位到是哪些州。谷歌的祕訣,就是看看民眾在網路上搜尋些什麼。由於谷歌每天會接收到超過三十億筆的搜尋,而且會把它們全部儲存起來,那就會有大量的資料得以運用。
谷歌先挑出美國人最常使用的前五千萬個搜尋字眼,再與美國疾病管制局在2003年到2008年之間的流感傳播資料,加以比對。谷歌的想法,是想靠著民眾在網路上搜尋什麼關鍵詞,找出那些感染了流感的人。雖然也曾有人就網路搜尋字眼做過類似的努力,但是從來沒人能像谷歌一樣掌握巨量資料(big data,直譯為大數據),並具備強大的處理能力和在統計上的專業技能。
雖然谷歌已經猜到,民眾的搜尋字眼可能與流感有關,像是「止咳退燒」,但相不相關其實不是真正的重點,他們設計的系統也不是從這個角度出發。谷歌這套系統真正做的,是要針對搜尋字眼的搜尋頻率,找出和流感傳播的時間、地區,有沒有統計上的相關性(correlation)。他們總共用上了高達4億5千萬種不同的數學模型,測試各種搜尋字眼,再與疾管局在2007年與2008年的實際流感病例加以比較。他們可挖到寶了!這套軟體找出了一組共四十五個搜尋字眼,放進數學模型之後,預測結果會與官方公布的全美真實資料十分符合,有強烈的相關性。於是,他們就像疾管局一樣能夠掌握流感疫情,但可不是一、兩星期之後的事,而是幾近即時同步的掌握!
因此,在2009年發生H1N1危機的時候,比起政府手中的資料(以及無可避免的通報延遲),谷歌系統能提供更有用、更及時的資訊。公衛當局有了這種寶貴的資訊,控制疫情如虎添翼。
最驚人的是,谷歌的這套方法並不需要去採集檢體、也不用登門造訪各家醫院診所,而只是好好利用了巨量資料,也就是用全新的方式來使用資訊,以取得實用且價值非凡的見解、商機或服務。有了谷歌這套系統,下次爆發流感的時候,全球就有了更佳的工具能夠加以預測、並防止疫情蔓延。
巨量資料功能強大,可以讓許多領域改頭換面,公共衛生領域不過是其中之一,而商業領域也正在經歷這個過程。例如買飛機票就是個很好的例子。
2003年,伊茲奧尼(Oren Etzioni)打算從西雅圖飛往洛杉磯參加弟弟的婚禮。早在幾個月前,他就已經上網買了機票,一心認為愈早預訂,票價就愈划算。但在航程中,他出於好奇,問了坐在隔壁的乘客票價以及購票時間,結果那個人明明是最近才買,票價卻是便宜得多。一氣之下,伊茲奧尼一個又一個的問下去,發現大部分人的票價都比他的更便宜。
對於大多數人來說,等到收回托盤、豎直椅背、準備下機的時候,這種覺得被敲竹槓的火氣,也差不多消了。但伊茲奧尼身為美國頂尖的資訊科學家,可沒這麼好打發。在他看來,整個世界就是由一連串關於巨量資料的問題構成的,而這正是他拿手的領域。追溯到1986年,伊茲奧尼可是哈佛大學第一位主修資訊科學的畢業生,之後進入華盛頓大學任教;而且早在巨量資料這個詞出現之前,他就已經開了數家處理巨量資料的公司。例如,他曾協助打造了最早期的網路搜尋引擎之一、於1994年推出的MetaCrawler,不久便由當時的網路巨擘InfoSpace公司買下。另外,他也共同創立了史上第一個大型比價購物網站Netbot,後來出售給Excite公司。至於他的另一間公司ClearForest,則是處理如何從文件中取得語義資訊,後來由路透社收購。
客機著陸之後,伊茲奧尼已經下定決心,要讓人能夠知道自己在網上看到的票價,究竟是撿到便宜還是被人坑了。如果把飛機機位看成商品,同一航班的座位基本上也沒什麼不同,但票價卻是天差地別。這裡有許多因素,只有航空公司自己才曉得。
伊茲奧尼認為,這種系統並不需要真的去解出票價背後千絲萬縷的糾纏因素,只要能預測出未來票價是漲是跌就夠了。這其實不困難,只要先取得特定航線售出的所有票價資訊,再與出發前天數做比較即可。
如果平均票價呈現下跌趨勢,買票這件事當然就可慢慢來。如果平均價格呈現上漲趨勢,系統則會建議馬上以目前顯示的價格購票。換句話說,當初伊茲奧尼是在三萬英尺高空詢問其他乘客的票價,而現在這個系統就是個加強版。雖然說這絕對還是個資訊工程的龐大問題,但與過去一樣,這對他而言仍然能夠迎刃而解。於是,他動工了。
伊茲奧尼花了四十一天,從某個旅遊網站取得超過一萬兩千筆票價資料,做為樣本,並建立一個預測模型,讓模擬的乘客都省下了大筆鈔票。這個模型並不懂「為何如此」(why),只知道「正是如此」(what)。換言之,模型完全不知道各種影響票價的因素,像是未售出的機位數、淡旺季、或是星期幾的機票較便宜之類;模型所做的預測,都是基於手中確實的資訊,也就是從其他航班所蒐集到的相關資料。
伊茲奧尼思思念念的,就是「要買還是不買」的問題——像極了莎翁名劇《哈姆雷特》的經典獨白:「生存還是毀滅,這是個問題。」正因如此,伊茲奧尼把這個研究計畫命名為「哈姆雷特」。
原本的小小研究計畫,後來發展成投入大量資金的創業計畫「Farecast」,藉著預測機票票價可能上漲或是下跌,Farecast就能讓消費者知道是否該立刻點選「購買」鍵。在過去,消費者從來不可能得知這些資訊。Farecast堅持一切應該透明,所以甚至還會對自己的預測加上可信度評分,提供給使用者參考。
預測系統要有效,就必須有大量的數據資料。為了提升效能,伊茲奧尼從航空業的一個航班預訂資料庫下手。資料庫存有全年美國商業航空各航班、各座位的資料,能做為系統預測的基礎。現在,Farecast手中大約有近兩千億筆票價紀錄,用以做出預測。如此一來,消費者就能省下大筆的金錢。
伊茲奧尼有一頭黃褐色的頭髮,露齒微笑、一臉天真,看起來實在不像是會讓航空業損失數百萬美元潛在收入的人。但事實上,他的目標甚至還不止於此。到了2008年,伊茲奧尼打算將這套辦法再應用到其他商品,像是飯店客房、音樂會門票、二手車等等,只要是產品差異性小、價格變化大、而且有大量數據資料的商品,都能適用。但他還沒來得及讓計畫成真,微軟就已經找上門來,用大約一億一千萬美元買下Farecast,結合到Bing搜尋引擎之中。到了2012年,該系統平均有75%的預測準確率,讓每位旅客省下50美元。
Farecast正是一個巨量資料的公司縮影,也是世界未來的走向。如果是五年或十年前,伊茲奧尼絕不可能建立起這種公司。他說:「這本來是不可能的任務,」所需要的計算能力和儲存容量都還太過昂貴。然而,讓計畫成真的原因當中,雖然科技進展是關鍵因素,但還有一個更微小、卻也更重要的因素,就是關於該如何使用資料的思維,已有所改變。
過去認為資料是靜態、靜止的,一旦完成原本蒐集的目的(例如飛機已降落、或谷歌完成了一次搜尋),便不再有用處。但現在,資料是新的商業生產原料、重要的經濟資源投入,可以創造出新形式的經濟價值。如果心態正確,就能巧妙重複運用資料,不斷帶來創新和不同的服務。只要夠謙卑、有意願、也有工具傾聽,資料就能讓種種祕密躍然眼前。

(本文僅為節錄,精彩內容請見《大數據》)

定價:420
網站特惠價:357(約85折)
目前庫存不足
定價:380
網站特惠價:323(約85折)
目前庫存不足
定價:450
網站特惠價:383(約85折)
目前庫存不足
定價:320
網站特惠價:272(約85折)
目前庫存不足
       
定價:350
網站特惠價:298(約85折)
放入購物車
定價:180
網站特惠價:153(約85折)
目前庫存不足
定價:300
網站特惠價:237(約79折)
目前庫存不足
定價:320
網站特惠價:253(約79折)
目前庫存不足
 
 
Copyright© 1999~2013 天下遠見出版股份有限公司. All rights reserved. 讀者服務部電話:(02)26620012 時間:週一∼週五 9:00∼17:00 服務信箱:service@cwgv.com.tw